12 RAG Pain Points and Proposed Solutions

Things that might lead to failure of RAG pipeline. Mostly taken from the blog

Pain point: * and solutions

1: Missing Content:

2: Missed the Top Ranked Documents

3: Not in Context — Consolidation Strategy Limitations

4: Not Extracted

5: Wrong Format

6: Incorrect Specificity

7: Incomplete and Impartial Responses

8: Data Ingestion Scalability

9: Structured Data QA

10: Data Extraction from Complex PDFs

11: Fallback Model(s): Use a model router like - Neutrino

    from llama_index.llms import Neutrino
    from llama_index.llms import ChatMessage

    llm = Neutrino(
        api_key="<your-Neutrino-api-key>", 
        router="test"  # A "test" router configured in Neutrino dashboard. You treat a router as a LLM. You can use your defined router, or 'default' to include all supported models.
    )

    response = llm.complete("What is large language model?")
    print(f"Optimal model: {response.raw['model']}")
    from llama_index.llms import OpenRouter
    from llama_index.llms import ChatMessage

    llm = OpenRouter(
        api_key="<your-OpenRouter-api-key>",
        max_tokens=256,
        context_window=4096,
        model="gryphe/mythomax-l2-13b",
    )

    message = ChatMessage(role="user", content="Tell me a joke")
    resp = llm.chat([message])
    print(resp)

12: LLM Security

Share link! 📋
Link copied!
See the main site!