Skip to content

Monitoring and Observability

Monitoring and Observability

graph LR
    A[Model Inference] --> B[Metrics Collection]
    B --> C[Time Series DB]
    C --> D[Alerting]
    C --> E[Dashboards]
    C --> F[Analytics]

    subgraph Metrics Pipeline
    B
    C
    end

    subgraph Visualization
    D
    E
    F
    end

Key Metrics

  • System Metrics:
    • Resource utilization
    • Response times
    • Error rates
    • Queue lengths
  • Model Metrics:
    • Inference quality
    • Token usage
    • Cache hit rates
    • Model drift indicators
  • Business Metrics:
    • Cost per request
    • User satisfaction
    • Feature usage
    • Business impact

Monitoring Tools

Prometheus

Industry-standard metrics collection and alerting.

Grafana

Visualization and dashboarding for operational metrics.

Weights & Biases

ML-specific monitoring and experiment tracking.

Logging and Tracing

  • Structured Logging:
    • Request/response logging
    • Error tracking
    • Performance logging
    • Audit trails
  • Distributed Tracing:
    • Request flow tracking
    • Bottleneck identification
    • Service dependencies
    • Performance profiling

Monitoring Architecture

graph TB
    Apps[Applications] --> Collectors[Metric Collectors]
    Models[ML Models] --> Collectors
    Infra[Infrastructure] --> Collectors

    Collectors --> TSDB[Time Series DB]
    TSDB --> Dashboards[Dashboards]
    TSDB --> Alerts[Alert Manager]
    TSDB --> Analytics[Analytics Engine]

    subgraph Visualization
    Dashboards
    Analytics
    end

    subgraph Actions
    Alerts --> Notifications[Notifications]
    Alerts --> AutoRemediation[Auto Remediation]
    end

Key Metrics Categories

Infrastructure Metrics

  • Resource utilization (CPU, Memory, GPU)
  • Network throughput and latency
  • Storage performance
  • Container health
  • Cluster metrics

Application Metrics

  • Request rates and patterns
  • Response times (p50, p90, p99)
  • Error rates and types
  • Queue lengths
  • Cache hit rates

Model Metrics

  • Inference latency
  • Token usage
  • Model accuracy
  • Prediction confidence
  • Feature distribution
  • Model drift indicators

Business Metrics

  • Cost per request
  • User satisfaction scores
  • Feature usage patterns
  • Business impact metrics
  • SLA compliance

Monitoring Tools

Metrics Collection

Prometheus

Industry-standard metrics collection system.

OpenTelemetry

Open-source observability framework.

Visualization

Grafana

Advanced visualization and dashboarding.

Kibana

Analytics and visualization platform.

ML-Specific Monitoring

Weights & Biases

ML experiment tracking and monitoring.

MLflow

End-to-end ML lifecycle platform.

Observability Practices

Logging Strategy

graph LR
    App[Application] --> Struct[Structured Logging]
    Struct --> Parse[Log Parsing]
    Parse --> Index[Log Indexing]
    Index --> Search[Search/Analysis]

    subgraph Log Pipeline
    Struct
    Parse
    Index
    end

Log Levels

  • ERROR: System failures
  • WARN: Potential issues
  • INFO: Normal operations
  • DEBUG: Detailed debugging
  • TRACE: Fine-grained details

Log Components

  • Timestamp
  • Request ID
  • User context
  • Operation details
  • Performance metrics
  • Error details

Tracing Implementation

Jaeger

End-to-end distributed tracing.

  • Request flow tracking
  • Service dependencies
  • Performance bottlenecks
  • Error propagation
  • Resource attribution

Alerting Strategy

Alert Categories

  • Critical: Immediate action required
  • Warning: Investigation needed
  • Info: Awareness only

Alert Components

  • Alert condition
  • Severity level
  • Resolution steps
  • Contact information
  • Escalation path

Best Practices

Data Collection

  • Use structured logging
  • Implement distributed tracing
  • Collect business metrics
  • Monitor user experience
  • Track resource usage

Data Storage

  • Time series optimization
  • Data retention policies
  • Storage scaling
  • Backup strategies
  • Access controls

Visualization

  • Real-time dashboards
  • Historical trends
  • Correlation analysis
  • Custom views
  • Export capabilities

Alert Management

  • Clear severity levels
  • Actionable alerts
  • Proper routing
  • Escalation procedures
  • Alert fatigue prevention

Advanced Topics

Automated Analysis

  • Anomaly detection
  • Pattern recognition
  • Predictive analytics
  • Root cause analysis
  • Capacity planning

Integration Points

  • CI/CD pipelines
  • Incident management
  • Change management
  • Resource provisioning
  • Cost optimization

Security Monitoring

  • Access patterns
  • Authentication events
  • Authorization checks
  • Data access logs
  • Security incidents

Troubleshooting Guide

Common Issues

  • High latency
  • Error spikes
  • Resource exhaustion
  • Model degradation
  • System failures

Resolution Steps

  1. Identify symptoms
  2. Collect relevant metrics
  3. Analyze patterns
  4. Determine root cause
  5. Implement fix
  6. Verify resolution
  7. Document findings

Prevention Strategies

  • Proactive monitoring
  • Regular health checks
  • Capacity planning
  • Performance testing
  • Disaster recovery